12 research outputs found

    Reliable and accurate diagnostics from highly multiplexed sequencing assays

    Get PDF
    Scalable, inexpensive, and secure testing for SARS-CoV-2 infection is crucial for control of the novel coronavirus pandemic. Recently developed highly multiplexed sequencing assays (HMSAs) that rely on high-throughput sequencing can, in principle, meet these demands, and present promising alternatives to currently used RT-qPCR-based tests. However, reliable analysis, interpretation, and clinical use of HMSAs requires overcoming several computational, statistical and engineering challenges. Using recently acquired experimental data, we present and validate a computational workflow based on kallisto and bustools, that utilizes robust statistical methods and fast, memory efficient algorithms, to quickly, accurately and reliably process high-throughput sequencing data. We show that our workflow is effective at processing data from all recently proposed SARS-CoV-2 sequencing based diagnostic tests, and is generally applicable to any diagnostic HMSA

    Reliable and accurate diagnostics from highly multiplexed sequencing assays

    Get PDF
    Scalable, inexpensive, and secure testing for SARS-CoV-2 infection is crucial for control of the novel coronavirus pandemic. Recently developed highly multiplexed sequencing assays (HMSAs) that rely on high-throughput sequencing can, in principle, meet these demands, and present promising alternatives to currently used RT-qPCR-based tests. However, reliable analysis, interpretation, and clinical use of HMSAs requires overcoming several computational, statistical and engineering challenges. Using recently acquired experimental data, we present and validate a computational workflow based on kallisto and bustools, that utilizes robust statistical methods and fast, memory efficient algorithms, to quickly, accurately and reliably process high-throughput sequencing data. We show that our workflow is effective at processing data from all recently proposed SARS-CoV-2 sequencing based diagnostic tests, and is generally applicable to any diagnostic HMSA

    Activation of peripheral nerve fibers by electrical stimulation in the sole of the foot

    Get PDF
    BACKGROUND: Human nociceptive withdrawal reflexes (NWR) can be evoked by electrical stimulation applied to the sole of the foot. However, elicitation of NWRs is highly site dependent, and NWRs are especially difficult to elicit at the heel. The aim of the present study was to investigate potential peripheral mechanisms for any site dependent differences in reflex thresholds. RESULTS: The first part of the study investigated the neural innervation in different sites of the sole of the foot using two different staining techniques. 1) Staining for the Na(v)1.7 antigen (small nociceptive fibers) and 2) the Sihler whole nerve technique (myelinated part of the nerve). No differences in innervation densities were found across the sole of the foot using the two staining techniques: Na(v)1.7 immunochemistry (small nociceptive fibers (1-way ANOVA, NS)) and the Sihler’s method (myelinated nerve fibers (1-way ANOVA, NS)). However, the results indicate that there are no nociceptive intraepidermal nerve fibers (IENFs) innervating the heel. Secondly, mathematical modeling was used to investigate to what degree differences in skin thicknesses affect the activation thresholds of Aδ and Aβ fibers in the sole of the foot. The modeling comprised finite element analysis of the volume conduction combined with a passive model of the activation of branching cutaneous nerve fibers. The model included three different sites in the sole of the foot (forefoot, arch and heel) and three different electrode sizes (diameters: 9.1, 12.9, and 18.3 mm). For each of the 9 combinations of site and electrode size, a total of 3000 Aβ fibers and 300 Aδ fibers was modeled. The computer simulation of the effects of skin thicknesses and innervation densities on thresholds of modeled Aδ and Aβ fibers did not reveal differences in pain and perception thresholds across the foot sole as have been observed experimentally. Instead a lack of IENFs at the heel decreased the electrical activation thresholds compared to models including IENFs. CONCLUSIONS: The nerve staining and modeling results do not explain differences in NWR thresholds across the sole of the foot which may suggest that central mechanisms contribute to variation in NWR excitability across the sole of the foot

    A Scalable, Multiplexed Assay for Decoding GPCR-Ligand Interactions with RNA Sequencing.

    No full text
    G protein-coupled receptors (GPCRs) are central to how mammalian cells sense and respond to chemicals. Mammalian olfactory receptors (ORs), the largest family of GPCRs, mediate the sense of smell through activation by small molecules, though for most bonafide ligands, they have not been identified. Here, we introduce a platform to screen large chemical panels against multiplexed GPCR libraries using next-generation sequencing of barcoded genetic reporters in stably engineered human cell lines. We mapped 39 mammalian ORs against 181 odorants and identified 79 interactions that have not been reported to our knowledge, including ligands for 15 previously orphaned receptors. This multiplexed receptor assay allows the cost-effective mapping of large chemical libraries to receptor repertoires at scale
    corecore